Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.556
Filtrar
1.
Toxicol Ind Health ; 40(6): 337-351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38597775

RESUMO

Gasoline station attendants are exposed to numerous chemicals that might have genotoxic and carcinogenic potential, such as benzene in fuel vapor and particulate matter and polycyclic aromatic hydrocarbons in vehicle exhaust emission. According to IARC, benzene and diesel particulates are Group 1 human carcinogens, and gasoline has been classified as Group 2A "possibly carcinogenic to humans." At gas stations, self-service is not implemented in Turkey; fuel-filling service is provided entirely by employees, and therefore they are exposed to those chemicals in the workplace during all working hours. Genetic monitoring of workers with occupational exposure to possible genotoxic agents allows early detection of cancer. We aimed to investigate the genotoxic damage due to exposures in gasoline station attendants in Turkey. Genotoxicity was evaluated by the Comet, chromosomal aberration, and cytokinesis-block micronucleus assays in peripheral blood lymphocytes. Gasoline station attendants (n = 53) had higher tail length, tail intensity, and tail moment values than controls (n = 61). In gasoline station attendants (n = 46), the frequencies of chromatid gaps, chromosome gaps, and total aberrations were higher compared with controls (n = 59). Increased frequencies of micronuclei and nucleoplasmic bridges were determined in gasoline station attendants (n = 47) compared with controls (n = 40). Factors such as age, duration of working, and smoking did not have any significant impact on genotoxic endpoints. Only exposure increased genotoxic damage in gasoline station attendants independently from demographic and clinical characteristics. Occupational exposure-related genotoxicity risk may increase in gasoline station attendants who are chronically exposed to gasoline and various chemicals in vehicle exhaust emissions.


Assuntos
Aberrações Cromossômicas , Dano ao DNA , Gasolina , Testes para Micronúcleos , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Gasolina/toxicidade , Adulto , Masculino , Turquia , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Pessoa de Meia-Idade , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Ensaio Cometa , Biomarcadores , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Linfócitos/efeitos dos fármacos , Feminino , Mutagênicos/toxicidade , Benzeno/toxicidade , Benzeno/análise
2.
Environ Int ; 185: 108528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422874

RESUMO

BACKGROUND: Diesel exhaust and respirable dust exposures in the mining industry have not been studied in depth with respect to non-malignant respiratory disease including chronic obstructive pulmonary disease (COPD), with most available evidence coming from other settings. OBJECTIVES: To assess the relationship between occupational diesel exhaust and respirable dust exposures and COPD mortality, while addressing issues of survivor bias in exposed miners. METHODS: The study population consisted of 11,817 male workers from the Diesel Exhaust in Miners Study II, followed from 1947 to 2015, with 279 observed COPD deaths. We fit Cox proportional hazards models for the relationship between respirable elemental carbon (REC) and respirable dust (RD) exposure and COPD mortality. To address healthy worker survivor bias, we leveraged the parametric g-formula to assess effects of hypothetical interventions on both exposures. RESULTS: Cox models yielded elevated estimates for the associations between average intensity of REC and RD and COPD mortality, with hazard ratios (HR) corresponding to an interquartile range width increase in exposure of 1.46 (95 % confidence interval (CI): 1.12, 1.91) and 1.20 (95 % CI: 0.96, 1.49), respectively for each exposure. HRs for cumulative exposures were negative for both REC and RD. Based on results from the parametric g-formula, the risk ratio (RR) for COPD mortality comparing risk under an intervention eliminating REC to the observed risk was 0.85 (95 % CI: 0.55, 1.06), equivalent to an attributable risk of 15 %. The corresponding RR comparing risk under an intervention eliminating RD to the observed risk was 0.93 (95 % CI: 0.56, 1.31). CONCLUSIONS: Our findings, based on data from a cohort of nonmetal miners, are suggestive of an increased risk of COPD mortality associated with REC and RD, as well as evidence of survivor bias in this population leading to negative associations between cumulative exposures and COPD mortality in traditional regression analysis.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Doença Pulmonar Obstrutiva Crônica , Humanos , Masculino , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/toxicidade , Emissões de Veículos/análise , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Carbono/análise , Poeira/análise
3.
Environ Health Perspect ; 131(8): 87002, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549095

RESUMO

BACKGROUND: The Diesel Exhaust in Miners Study (DEMS) was an important contributor to the International Agency for Research on Cancer reclassification of diesel exhaust as a Group I carcinogen and subsequent risk assessment. We extended the DEMS cohort follow-up by 18 y and the nested case-control study to include all newly identified lung cancer deaths and matched controls (DEMS II), nearly doubling the number of lung cancer deaths. OBJECTIVE: Our purpose was to characterize the exposure-response relationship with a focus on the effects of timing of exposure and exposure cessation. METHODS: We conducted a case-control study of lung cancer nested in a cohort of 12,315 workers in eight nonmetal mines (376 lung cancer deaths, 718 controls). Controls were selected from workers who were alive when the case died, individually matched on mine, sex, race/ethnicity, and birth year (within 5 y). Based on an extensive historical exposure assessment, we estimated respirable elemental carbon (REC), an index of diesel exposure, for each cohort member. Odds ratios (ORs) were estimated by conditional regression analyses controlling for smoking and other confounders. To evaluate time windows of exposure, we evaluated the joint OR patterns for cumulative REC within each of four preselected exposure time windows, <5, 5-9, 10-19, and ≥20 y prior to death/reference date, and we evaluated the interaction of cumulative exposure across time windows under additive and multiplicative forms for the joint association. RESULTS: ORs increased with increasing 15-y lagged cumulative exposure, peaking with a tripling of risk for exposures of ∼950 to<1,700 µg/m3-y [OR=3.23; 95% confidence interval (CI): 1.47, 7.10], followed by a plateau/decline among the heavily exposed (OR=1.85; 95% CI: 0.85, 4.04). Patterns of risk by cumulative REC exposure varied across four exposure time windows (phomogeneity<0.001), with ORs increasing for exposures accrued primarily 10-19 y prior to death (ptrend<0.001). Results provided little support for a waning of risk among workers whose exposures ceased for ≥20 y. CONCLUSION: DEMS II findings provide insight into the exposure-response relationship between diesel exhaust and lung cancer mortality. The pronounced effect of exposures occurring in the window 10-19 y prior to death, the sustained risk 20 or more years after exposure ceases, and the plateau/decline in risk among the most heavily exposed provide direction for future research on the mechanism of diesel-induced carcinogenesis in addition to having important implications for the assessment of risk from diesel exhaust by regulatory agencies. https://doi.org/10.1289/EHP11980.


Assuntos
Poluentes Ocupacionais do Ar , Neoplasias Pulmonares , Exposição Ocupacional , Humanos , Estudos de Casos e Controles , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/toxicidade , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia
4.
J Toxicol Environ Health B Crit Rev ; 26(4): 238-255, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36883725

RESUMO

Firefighters are the principal line of defense against fires, being at elevated risk of exposure to health-relevant pollutants released during fires and burning processes. Although many biomonitoring studies exist, only a limited number of human in vitro investigations in fire risk assessment are currently available. In vitro studies stand out as valuable tools to assess the toxicity mechanisms involved following exposure to fire pollutants at a cellular level. The aim of the present review was to contextualize existing in vitro studies using human cell models exposed to chemicals emitted from fire emissions and wood smoke and discuss the implications of the observed toxic outcomes on adverse health effects detected in firefighters. Most of the reported in vitro investigations focused on monocultures respiratory models and exposure to particulate matter (PM) extracts collected from fire effluents. Overall, (1) a decrease in cellular viability, (2) enhanced oxidative stress, (3) increased pro-inflammatory cytokines levels and (4) elevated cell death frequencies were noted. However, limited information remains regarding the toxicity mechanisms initiated by firefighting activities. Hence, more studies employing advanced in vitro models and exposure systems using human cell lines are urgently needed taking into consideration different routes of exposure and health-related pollutants released from fires. Data are needed to establish and define firefighters' occupational exposure limits and to propose mitigation strategies to promote beneficial human health.


Assuntos
Poluentes Ocupacionais do Ar , Poluentes Ambientais , Bombeiros , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Fumaça/efeitos adversos , Material Particulado/toxicidade , Poluentes Ocupacionais do Ar/toxicidade , Poluentes Ocupacionais do Ar/análise
5.
Clin Oral Investig ; 27(5): 1815-1829, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36773127

RESUMO

OBJECTIVES: Dental professionals are exposed to large amounts of dust particles during routine treatment and denture processing. This article provides a narrative review to investigate the most prevalent dust-related respiratory diseases among dental professionals and to discuss the effects of dental dust on human respiratory health. MATERIALS AND METHODS: A literature search was performed in PubMed/Medline, Web of Science, and Embase for articles published between 1990 and 2022. Any articles on the occupational respiratory health effects of dental dust were included. RESULTS: The characterization and toxicity evaluation of dental dust show a correlation between dust exposure and respiratory system injury, and the possible pathogenic mechanism of dust is to cause lung injury and abnormal repair processes. The combination use of personal protective equipment and particle removal devices can effectively reduce the adverse health effects of dust exposure. CONCLUSIONS: Dental dust should be considered an additional occupational hazard in dental practice. However, clinical data and scientific evidence on this topic are still scarce. Further research is required to quantify dust in the dental work environment and clarify its pathogenicity and potential toxicological pathways. Nonetheless, the prevention of dust exposure should become a consensus among dental practitioners. CLINICAL RELEVANCE: This review provides dental practitioners with a comprehensive understanding and preventive advice on respiratory health problems associated with dust exposure.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Odontólogos , Poeira/análise , Virulência , Papel Profissional , Sistema Respiratório
6.
Environ Mol Mutagen ; 64(3): 159-166, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36762959

RESUMO

Diesel engine exhaust (DEE) is an established lung carcinogen, but the biological mechanisms of diesel-induced lung carcinogenesis are not well understood. MicroRNAs (miRNAs) are small noncoding RNAs that play a potentially important role in regulating gene expression related to lung cancer. We conducted a cross-sectional molecular epidemiology study to evaluate whether serum levels of miRNAs are altered in healthy workers occupationally exposed to DEE compared to unexposed controls. We conducted a two-stage study, first measuring 405 miRNAs in a pilot study of six DEE-exposed workers exposed and six controls. In the second stage, 44 selected miRNAs were measured using the Fireplex circulating miRNA assay that profiles miRNAs directly from biofluids of 45 workers exposed to a range of DEE (Elemental Carbon (EC), median, range: 47.7, 6.1-79.7 µg/m3 ) and 46 controls. The relationship between exposure to DEE and EC with miRNA levels was analyzed using linear regression adjusted for potential confounders. Serum levels of four miRNAs were significantly lower (miR-191-5p, miR-93-5p, miR-423-3p, miR-122-5p) and one miRNA was significantly higher (miR-92a-3p) in DEE exposed workers compared to controls. Of these miRNAs, miR-191-5p (ptrend  = .001, FDR = 0.04) and miR-93-5p (ptrend  = .009, FDR = 0.18) showed evidence of an inverse exposure-response with increasing EC levels. Our findings suggest that occupational exposure to DEE may affect circulating miRNAs implicated in biological processes related to carcinogenesis, including immune function.


Assuntos
Poluentes Ocupacionais do Ar , MicroRNAs , Exposição Ocupacional , Humanos , MicroRNAs/genética , Poluentes Ocupacionais do Ar/toxicidade , Poluentes Ocupacionais do Ar/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Epidemiologia Molecular , Estudos Transversais , Projetos Piloto , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Carcinogênese
7.
Toxicol Appl Pharmacol ; 464: 116436, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36813138

RESUMO

The goal of this study was to investigate the impact of multiple exposomal factors (genetics, lifestyle factors, environmental/occupational exposures) on pulmonary inflammation and corresponding alterations in local/systemic immune parameters. Accordingly, male Sprague-Dawley (SD) and Brown Norway (BN) rats were maintained on either regular (Reg) or high fat (HF) diets for 24wk. Welding fume (WF) exposure (inhalation) occurred between 7 and 12wk. Rats were euthanized at 7, 12, and 24wk to evaluate local and systemic immune markers corresponding to the baseline, exposure, and recovery phases of the study, respectively. At 7wk, HF-fed animals exhibited several immune alterations (blood leukocyte/neutrophil number, lymph node B-cell proportionality)-effects which were more pronounced in SD rats. Indices of lung injury/inflammation were elevated in all WF-exposed animals at 12wk; however, diet appeared to preferentially impact SD rats at this time point, as several inflammatory markers (lymph node cellularity, lung neutrophils) were further elevated in HF over Reg animals. Overall, SD rats exhibited the greatest capacity for recovery by 24wk. In BN rats, resolution of immune alterations was further compromised by HF diet, as many exposure-induced alterations in local/systemic immune markers were still evident in HF/WF animals at 24wk. Collectively, HF diet appeared to have a greater impact on global immune status and exposure-induced lung injury in SD rats, but a more pronounced effect on inflammation resolution in BN rats. These results illustrate the combined impact of genetic, lifestyle, and environmental factors in modulating immunological responsivity and emphasize the importance of the exposome in shaping biological responses.


Assuntos
Poluentes Ocupacionais do Ar , Expossoma , Lesão Pulmonar , Exposição Ocupacional , Pneumonia , Soldagem , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Ratos Endogâmicos BN , Lesão Pulmonar/induzido quimicamente , Dieta Hiperlipídica/efeitos adversos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Pneumonia/induzido quimicamente , Inflamação , Biomarcadores , Poluentes Ocupacionais do Ar/toxicidade
8.
Biol Trace Elem Res ; 201(4): 1781-1791, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35525901

RESUMO

Metal fume pollutants of urban Kano, a city of over 10 million people, and widespread metal works have increased exposure with related health effects. Few data on metal fume toxicity and atmospheric levels have been documented in Nigeria and Kano in particular. Hence, the work was aimed at evaluating the metal fume toxicity to laboratory rat species for setting the permissible limit of exposure in urban Kano. The investigation involved the collection of metal welding fumes and subsequent laboratory analysis. Experimental animals were then exposed intratracheally to varying doses of the fumes which were equivalent to normal metal workers' daily routine of 2, 4, and 8 h for 3, 5, 10, and 20 years. Following euthanization, whole blood samples were collected and functions of liver and delta-aminolevunilic acid dehydratase were evaluated in the serum. Exposure to the fumes has caused significant mortality that was observed to be dose-dependent and statistically different (p < 0.05); moreover, the fumes had synergistically affected the functions of liver. In addition, the fumes had increased (statistically) the activity delta-aminolevinilic acid dehydratase. This has indicated that exposure to metal welding fumes being multi-elemental is toxic and had produced mortality at exposure to higher doses of metal welding fumes. It was therefore established from the study that no-observed-adverse-effect level (NOAEL) for metal welding fumes is 25.73 mg with LD50 of 270 mg which corresponds to the metal worker's 4-h shifts daily for 5 years under existing working conditions. It was recommended that regular monitoring should be put in place to limit exposure and extent of engagement in metal works beyond NOAEL levels.


Assuntos
Poluentes Ocupacionais do Ar , Doença Hepática Induzida por Substâncias e Drogas , Soldagem , Animais , Ratos , Nível de Efeito Adverso não Observado , Poluentes Ocupacionais do Ar/toxicidade , Poluentes Ocupacionais do Ar/análise , Nigéria , Metais/análise , Gases/análise , Gases/toxicidade , Hidroliases/análise
9.
Neurotoxicology ; 93: 324-336, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36309163

RESUMO

Motor synergies, i.e., neural mechanisms that organize multiple motor elements to ensure stability of actions, are affected by several neurological condition. Asymptomatic welders showed impaired synergy controlling the stability of multi-finger action compared to non-welders and this impairment was associated with microstructural damage in the globus pallidus. We further explored the effect of welding-related metal exposure on multi-finger synergy and extended our investigation to posture-stabilizing synergy during a standing task. Occupational, MRI, and performance-stabilizing synergies during multi-finger accurate force production and load releasing while standing were obtained from 29 welders and 19 age- and sex-matched controls. R2* and R1 relaxation rate values were used to estimate brain iron and manganese content, respectively, and diffusion tensor imaging was used to reflect brain microstructural integrity. Associations of brain MRI (caudate, putamen, globus pallidus, and red nucleus), and motor synergy were explored by group status. The results revealed that welders had higher R2* values in the caudate (p = 0.03), putamen (p = 0.01), and red nucleus (p = 0.08, trend) than controls. No group effect was revealed on multi-finger synergy index during steady-state phase of action (ΔVZss). Compared to controls, welders exhibited lower ΔVZss (-0.106 ± 0.084 vs. 0.160 ± 0.092, p = 0.04) and variance that did not affect the performance variable (VUCM, 0.022 ± 0.003 vs. 0.038 ± 0.007, p = 0.03) in the load releasing, postural task. The postural synergy index, ΔVZss, was associated negatively with higher R2* in the red nucleus in welders (r = -0.44, p = 0.03), but not in controls. These results suggest that the synergy index in the load releasing during a standing task may reflect welding-related neurotoxicity in workers with chronic metals exposure. This finding may have important clinical and occupational health implications.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Humanos , Imagem de Tensor de Difusão , Esforço Físico , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Manganês/toxicidade , Metais , Poluentes Ocupacionais do Ar/toxicidade
10.
Arch Toxicol ; 96(12): 3201-3217, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35984461

RESUMO

Thermal spray coating is an industrial process in which molten metal is sprayed at high velocity onto a surface as a protective coating. An automated electric arc wire thermal spray coating aerosol generator and inhalation exposure system was developed to simulate an occupational exposure and, using this system, male Sprague-Dawley rats were exposed to stainless steel PMET720 aerosols at 25 mg/m3 × 4 h/day × 9 day. Lung injury, inflammation, and cytokine alteration were determined. Resolution was assessed by evaluating these parameters at 1, 7, 14 and 28 d after exposure. The aerosols generated were also collected and characterized. Macrophages were exposed in vitro over a wide dose range (0-200 µg/ml) to determine cytotoxicity and to screen for known mechanisms of toxicity. Welding fumes were used as comparative particulate controls. In vivo lung damage, inflammation and alteration in cytokines were observed 1 day post exposure and this response resolved by day 7. Alveolar macrophages retained the particulates even after 28 day post-exposure. In line with the pulmonary toxicity findings, in vitro cytotoxicity and membrane damage in macrophages were observed only at the higher doses. Electron paramagnetic resonance showed in an acellular environment the particulate generated free radicals and a dose-dependent increase in intracellular oxidative stress and NF-kB/AP-1 activity was observed. PMET720 particles were internalized via clathrin and caveolar mediated endocytosis as well as actin-dependent pinocytosis/phagocytosis. The results suggest that compared to stainless steel welding fumes, the PMET 720 aerosols were not as overtly toxic, and the animals recovered from the acute pulmonary injury by 7 days.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Ratos , Animais , Masculino , Aço Inoxidável/toxicidade , Poluentes Ocupacionais do Ar/toxicidade , NF-kappa B , Actinas , Fator de Transcrição AP-1 , Ratos Sprague-Dawley , Aerossóis e Gotículas Respiratórios , Soldagem/métodos , Exposição por Inalação/efeitos adversos , Pulmão , Poeira , Inflamação/patologia , Citocinas , Clatrina/farmacologia
11.
Environ Res ; 214(Pt 4): 114152, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36041537

RESUMO

The present systematic review aimed to evaluate the associations between welding fumes exposure and changes in oxidative stress [superoxide dismutase (SOD) and malondialdehyde (MDA)] and DNA damage [8-hydroxy-2'-deoxyguanosine (8-OHdG) and DNA-protein crosslink (DPC)] markers in professional welders (PROSPERO CRD42022298115). Six electronic bibliographic databases were searched from inception through September 2021 to identify observational epidemiological studies evaluating the association between welding fumes exposures and changes in oxidative stress and DNA damage in professional welders. Two reviewers independently assessed the risk of bias and certainty of the evidence. A narrative synthesis of results was conducted using the Synthesis Without Meta-analysis (SWiM) method. Pooled mean differences with 95% confidence intervals were calculated in a random-effects meta-analysis for the outcomes of interest in the review. From 450 studies identified through the search strategy, 14 observational epidemiological studies were included in the review. Most studies reported significantly higher welding fumes levels in welders than in controls. The narrative synthesis results of SOD showed a significant difference between welders and controls, while the meta-analysis results of MDA did not show a significant difference between the studied groups (MD = 0.26; 95% CI, -0.03, 0.55). The meta-analysis results of 8-OHdG (MD = 9.38; 95% CI, 0.55-18.21) and DPC (MD = 1.07; 95% CI, 0.14-2) revealed significantly differences between the studied groups. The included studies were at high risk of exclusion and confounding bias. The certainty of the evidence for oxidative stress and DNA damage results were very low and moderate, respectively. Exposure to welding fumes and metal particles is associated with DNA damage in professional welders, and 8-OHdG and DPC might be considered reliable markers to assess DNA damage resulting from exposure to welding fumes. We recommend, however, that the evaluation of oxidative stress resulting from welding fumes exposure not be solely based on MDA and SOD.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , 8-Hidroxi-2'-Desoxiguanosina , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Biomarcadores/análise , Dano ao DNA , Gases/análise , Humanos , Ferreiros , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Estresse Oxidativo , Superóxido Dismutase
12.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012318

RESUMO

Zinc- and copper-containing welding fumes can cause systemic inflammation after exposure in humans. Recent ex vivo studies have shown that the observed inflammation originates from exposed immune cells. In vitro studies identified the soluble fraction of metal particles as the main effectors. Isolated perfused mouse lungs (IPLs) were perfused and ventilated for 270 min. Lungs were instilled with saline solution (control), welding fume particle suspension (WFs) or the soluble fraction of the welding fumes (SF-WFs). Bronchoalveolar lavage fluid (BALF) and perfusate samples were analyzed for cytokine levels and lung tissue mRNA expression levels were analyzed via RT-PCR. All lungs instilled with WFs did not complete the experiments due to a fatal reduction in tidal volume. Accordingly, IL-6 and MPO levels were significantly higher in BALF of WF lungs compared to the control. IL-6 and MPO mRNA expression levels were also increased for WFs. Lungs instilled with SF-WFs only showed mild reactions in tidal volume, with BALF and mRNA expression levels not significantly differing from the control. Zinc- and copper-containing welding fume particles adversely affect IPLs when instilled, as evidenced by the fatal loss in tidal volume and increased cytokine expression and secretion. The effects are mainly caused by the particles, not by the soluble fraction.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Poluentes Ocupacionais do Ar/toxicidade , Animais , Cobre/farmacologia , Citocinas/metabolismo , Gases/farmacologia , Inflamação/etiologia , Exposição por Inalação , Interleucina-6/genética , Interleucina-6/farmacologia , Pulmão/metabolismo , Camundongos , RNA Mensageiro/genética , Zinco/farmacologia
13.
Environ Res ; 212(Pt D): 113597, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660405

RESUMO

Waste workers are exposed to bioaerosols when handling, lifting and dumping garbage. Bioaerosol exposure has been linked to health problems such as asthma, airway irritant symptoms, infectious, gastrointestinal and skin diseases, and cancer. Our objective was to characterize the exposure of urban collectors and drivers to inhalable bioaerosols and to measured the cytotoxic effect of air samples in order to evaluate their health risk. Personal and ambient air sampling were conducted during the summer of 2019. Workers from 12 waste trucks collecting recyclables, organic waste or compost were evaluated. Bacteria and fungi were cultured, molecular biology methods were used to detect microbial indicators, cytotoxic assays were performed and endotoxins and mycotoxins were quantified. Domestic waste collectors were exposed to concentrations of bacteria and endotoxins above the recommended limits, and Aspergillus section Fumigati was detected at critical concentrations in their breathing zones. Cytotoxic effects were observed in many samples, demonstrating the potential health risk for these workers. This study establishes evidence that waste workers are exposed to microbial health risks during collection. It also demonstrates the relevance of cytotoxic assays in documenting the general toxic risk found in air samples. Our results also suggest that exposures differ depending on the type of waste, job title and discharge/unloading locations.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Bactérias , Endotoxinas/análise , Endotoxinas/toxicidade , Fungos , Humanos , Veículos Automotores , Exposição Ocupacional/análise
14.
Inhal Toxicol ; 34(9-10): 275-286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35724235

RESUMO

Objective: Stainless steel welding creates fumes rich in carcinogenic metals such as chromium (Cr). Welding consumables devoid of Cr are being produced in an attempt to limit worker exposures to toxic and carcinogenic metals. The study objective was to characterize a copper-nickel (Cu-Ni) fume generated using gas metal arc welding (GMAW) and determine the pulmonary deposition and toxicity of the fume in mice exposed by inhalation. Materials and Methods: Male A/J mice (6-8 weeks of age) were exposed to air or Cu-Ni welding fumes for 2 (low deposition) or 4 (high deposition) hours/day for 10 days. Mice were sacrificed, and bronchoalveolar lavage (BAL), macrophage function, and histopathological analyses were performed at different timepoints post-exposure to evaluate resolution. Results and Discussion: Characterization of the fume indicated that most of the particles were between 0.1 and 1 µm in diameter, with a mass median aerodynamic diameter of 0.43 µm. Metal content of the fume was Cu (∼76%) and Ni (∼12%). Post-exposure, BAL macrophages had a reduced ability to phagocytose E. coli, and lung cytotoxicity was evident and significant (>12%-19% fold change). Loss of body weight was also significant at the early timepoints. Lung inflammation, the predominant finding identified by histopathology, was observed as a subacute response early that progressively resolved by 28 days with only macrophage aggregates remaining late (84 days). Conclusions: Overall, there was high acute lung toxicity with a resolution of the response in mice which suggests that the Cu-Ni fume may not be ideal for reducing toxic and inflammatory lung effects.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Animais , Cromo , Cobre/toxicidade , Escherichia coli , Gases/análise , Gases/farmacologia , Pulmão , Masculino , Metais , Camundongos , Níquel/toxicidade , Soldagem/métodos
15.
Toxicol Ind Health ; 38(5): 270-276, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35465785

RESUMO

Exposure to aerosols has been found to be linked to respiratory impairment. Although the effects of both indoor and outdoor exposures to particulates have been extensively reported, exposures to mists are less studied. Herein, we reported a survey of mineral oil mist toxicity in an occupational exposure scenario. For the purpose of this study, 65 lathe workers of the metal processing industry, as mineral oil mist-exposed population, were studied. Thereafter, the participants' age, smoking habits and work experience were matched with those of the control workers (n = 65) who were not occupationally exposed to mist. Thereafter, air samples were evaluated from the breathing zone of the workers using NIOSH method 5026. Plasma Interleukin-1ß as a pro-inflammatory indicator was assessed in all the studied subjects. Mean ± standard deviation of mineral oil mist time-weighted average exposure in lathe workers was 7.10± 3.49 mg/m3. IL-1ß cytokine levels were significantly higher in the lathe groups compared to the control group. The mean level of Interleukin-1ß in the control subjects (2922 pg/L) was selected as the cut-off point of the inflammation effect. Based on this pro-inflammatory point, the results of monitoring showed that 60% of the exposed were affected. A Spearman correlation was also found between mineral oil mist exposure and inflammation in the affected subjects. Our findings highlighted the immunological potential of mineral oil mist in occupational exposure. Overall, the results of this study suggested that Interleukin-1ß evaluation in mineral oil mist exposure could be considered as both an acute and chronic inflammation marker.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Poluentes Ocupacionais do Ar/toxicidade , Humanos , Inflamação/induzido quimicamente , Interleucina-1beta , Óleo Mineral/análise , Óleo Mineral/toxicidade , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise
16.
J Biochem Mol Toxicol ; 36(4): e23000, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35156261

RESUMO

Evaluation of the compounds and metabolites, and studying their side effects in the workplace is essential. This study was designed to evaluate the exposure of dry  cleaning workers to perchloroethylene (PEC), and its liver and kidney damage, and oxidative stress in B-lymphocytes isolated from the workers. Blood samples were evaluated for liver (alanine transaminase [ALT] and aspartate transaminase [AST]) and kidney (BUN and creatinine) markers. For measurement of PEC, exhaled, personal, and ambient air samples were collected and analyzed gas chromatography (GC-FID) through the NIOSH 1003 and 3704 methods. Also, the parameters of oxidative stress including the level of reactive oxygen species (ROS), glutathione (GSH), oxidized glutathione (GSSG), and lipid peroxidation (LPO) in B-lymphocytes were evaluated. The results showed that the levels of liver enzymes ALT and AST in dry cleaning workers are higher than in the control group. The personal exposure levels and exhaled air concentration of PEC in dry cleaning workers were above the recommended national occupational exposure limits (OELs) and the biological exposure index (BEI). The levels of ROS, LPO, and GSSG in B-lymphocytes from the dry cleaning workers are higher than the control group, and the levels of GSH in dry cleaning workers are lower. The results suggested that exposure of dry cleaning workers to PEC could be associated with liver damage and oxidative damage in B-lymphocytes.


Assuntos
Poluentes Ocupacionais do Ar , Lavanderia , Tetracloroetileno , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Monitoramento Ambiental/métodos , Dissulfeto de Glutationa/análise , Humanos , Lavanderia/métodos , Linfócitos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Tetracloroetileno/análise , Tetracloroetileno/toxicidade
17.
Arch Toxicol ; 96(4): 969-985, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35188583

RESUMO

Translating particle dose from in vitro systems to relevant human exposure remains a major challenge for the use of in vitro studies in assessing occupational hazard and risk of particle exposure. This study aimed to model the lung deposition and retention of welding fume particles following occupational scenarios and subsequently compare the lung doses to those used in vitro. We reviewed published welding fume concentrations and size distributions to identify input values simulating real-life exposure scenarios in the multiple path particle dosimetry (MPPD) model. The majority of the particles were reported to be below 0.1 µm and mass concentrations ranged between 0.05 and 45 mg/m3. Following 6-h exposure to 5 mg/m3 with a count median diameter of 50 nm, the tracheobronchial lung dose (0.89 µg/cm2) was found to exceed the in vitro cytotoxic cell dose (0.125 µg/cm2) previously assessed by us in human bronchial epithelial cells (HBEC-3kt). However, the tracheobronchial retention decreased rapidly when no exposure occurred, in contrast to the alveolar retention which builds-up over time and exceeded the in vitro cytotoxic cell dose after 1.5 working week. After 1 year, the tracheobronchial and alveolar retention was estimated to be 1.15 and 2.85 µg/cm2, respectively. Exposure to low-end aerosol concentrations resulted in alveolar retention comparable to cytotoxic in vitro dose in HBEC-3kt after 15-20 years of welding. This study demonstrates the potential of combining real-life exposure data with particle deposition modelling to improve the understanding of in vitro concentrations in the context of human occupational exposure.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Humanos , Exposição por Inalação/estatística & dados numéricos , Pulmão , Exposição Ocupacional/análise , Exposição Ocupacional/estatística & dados numéricos , Tamanho da Partícula
18.
Toxicology ; 466: 153085, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34968639

RESUMO

Formaldehyde mainly emitted from wood adhesives, finishing materials, paint for furniture represents, together with wood dust, a potential carcinogenic risk for wood workers. Aims of this multidisciplinary study are to investigate the possibility of replacing urea-formaldehyde (UF) adhesives in the wood industry with organic and/or inorganic-based glues to obtain a final less toxic product and to evaluate the potential toxicity of wood glued with such new adhesives. For this purpose we selected poplar wood to test an organic new adhesive HBP (Hemp Based Protein), a mixture of hemp flour and cross-linker PAE (polyaminoamide epichlorohydrin), and spruce wood to test an inorganic adhesive geopolymer K-PSS (potassium-polysiloxosialate) plus polyvinyl acetate. For the poplar wood, we also used a commercial panel glued with UF for comparison. We reproduced occupational inhalation exposure during sawing activities of mentioned woods, collected and characterized the wood dusts emitted during sawing and evaluated in vitro their potential cyto-genotoxic and inflammatory effects. We used human lung cells (A549) exposed for 24 h to 20 and 100 µg/mL of collected PM2.5 wood dust. We found that both the new adhesives wood dusts induced a slightly higher apoptotic effect than untreated natural wood dusts particularly in spruce wood. Only geopolymer K-PSS wood dust induced membrane damage at the highest concentration and direct and oxidative DNA damage that could be explained by the different chemical composition and the lower particle sizes in respect to organic HBP adhesive wood dust. We found slight induction of IL-6 release, not influenced by K-PSS treatment, at the highest concentration in spruce wood. For poplar wood, IL-6 and IL-8 induction was found particularly for untreated and UF-treated wood at the highest concentration, where hemp adhesive treatment induced lower inflammation while at lower concentration similar slight cytokine induction was found for all tested wood dusts. This preliminary study shows that natural adhesives used to replace UF adhesives represent an interesting alternative, particularly the organic hemp-based adhesive showing very low toxicity.


Assuntos
Adesivos/toxicidade , Poluentes Ocupacionais do Ar/toxicidade , Membrana Celular/efeitos dos fármacos , Citocinas/metabolismo , Dano ao DNA/efeitos dos fármacos , Poeira/análise , Madeira , Células A549 , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Inflamação , Exposição por Inalação , Pesquisa Interdisciplinar , Modelos Teóricos , Exposição Ocupacional , Tamanho da Partícula , Testes de Toxicidade/métodos
19.
Environ Mol Mutagen ; 63(1): 18-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894159

RESUMO

Diesel engine exhaust (DEE) is classified as a Group 1 human carcinogen. Using a targeted proteomics approach, we aimed to identify proteins associated with DEE and characterize these markers to understand the mechanisms of DEE-induced carcinogenicity. In this cross-sectional molecular epidemiology study, we measured elemental carbon (EC) using a personal air monitor and quantified 1317 targeted proteins in the serum using the SOMAScan assay (SOMALogic) among 19 diesel exposed factory workers and 19 unexposed controls. We used linear regressions to identify proteins associated with DEE and examined their exposure-response relationship across levels of EC using linear trend tests. We further examined pathway enrichment of DEE-related proteins using MetaCore. Occupational exposure to DEE was associated with altered levels of 22 serum proteins (permutation p < .01). Of these, 13 proteins (CXCL11, HAPLN1, FLT4, CD40LG, PES1, IGHE.IGK..IGL, TNFSF9, PGD, NAGK, CCL25, CCL4L1, PDXK, and PLA2G1B) showed an exposure-response relationship with EC (p trend < .01), with serum levels of all but PLA2G1B declining with increasing air levels of EC. For instance, C-X-C Motif Chemokine Ligand 11 (CXCL11) showed the most significant association with DEE (ß = -0.25; permutation p = .00004), where mean serum levels were 4121.1, 2356.7, and 2298.8 relative fluorescent units among the unexposed, lower exposed (median, range : 56.9, 40.2-62.1 µg/m3 EC), and higher exposed (median, range of EC: 72.9, 66.9-107.7 µg/m3 EC) groups, respectively (p trend = .0005). Pathway analysis suggested that these proteins are enriched in pathways related to inflammation and immune regulation. Our study suggests that DEE exposure is associated with altered serum proteins, which play a role in inflammation and immune regulation.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Carbono/análise , Carbono/metabolismo , Estudos Transversais , Fosfolipases A2 do Grupo IB/metabolismo , Humanos , Inflamação/metabolismo , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Proteômica , Proteínas de Ligação a RNA/análise , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
20.
Biomarkers ; 27(1): 60-70, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34872432

RESUMO

INTRODUCTION: In light of potential negative health effects of cobalt exposure, a characterization of inflammatory mechanisms in exposed individuals is warranted. The current study investigated cobalt exposure in the Swedish hard metal industry and its relationship to inflammatory markers, including NLRP3 inflammasome activation and white blood cell (WBC) counts. MATERIALS AND METHODS: Inhalable cobalt and dust exposures, and systemic cobalt levels, were determined for 72 workers in the hard metal industry and linear regression models were applied to correlate exposure to markers of inflammasome activation and WBC counts. RESULTS: Mean exposures to inhalable dust (0.11 mg/m3) and cobalt (0.0034 mg/m3) were below the Swedish occupational exposure limits, and these low exposures did not correlate with any investigated outcomes. Instead, cobalt blood levels significantly correlated with a ca 10% decrease in IL-18 plasma levels per 10 nM cobalt increase. Furthermore, pre-shift cobalt blood and/or urine levels significantly correlated with some WBC measures, including decreased neutrophil-to-lymphocyte ratio, increased lymphocyte-to-monocyte ratio, and lymphocyte counts. CONCLUSION: The low inhalable particle exposures had no impact on WBC counts and inflammasome activation. Instead, systemic cobalt levels, which also include skin exposure, demonstrated possible suppressive effects on inflammatory responses in cobalt-exposed individuals in the hard metal industry.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Ligas , Cobalto/toxicidade , Poeira/análise , Humanos , Inflamassomos , Contagem de Leucócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Exposição Ocupacional/análise , Exposição Ocupacional/estatística & dados numéricos , Tungstênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...